New classes of priors based on stochastic orders and distortion functions

Fabrizio Ruggeri

Istituto di Matematica Applicata e Tecnologie Informatiche
Consiglio Nazionale delle Ricerche
Via Bassini 15, I-20133, Milano, Italy
fabrizio@mi.imati.cnr.it
web.mi.imati.cnr.it/fabrizio/

Institute for Future Environments, Queensland University of Technology
Brisbane, Australia

Joint work with

• Jose Pablo Arias-Nicolás (Universidad de Extremadura, Spain)
• Alfonso Suárez-Llorens (Universidad de Cadiz, Spain)

to appear in *Bayesian Analysis*
OUTLINE OF THE TALK

- Bayesian robustness
- Stochastic orders
- Distortion function and distortion band of priors
- Relation with concentration functions
- Metrics to measure uncertainty
- Ordering of Bayes actions
- Numerical examples
- Future work
• $X \sim \mathcal{N}(\theta, 1)$

• Expert’s opinion on prior P: median at 0, quartiles at ± 1, symmetric and unimodal

• \Rightarrow Possible priors include Cauchy $C(0, 1)$ and Gaussian $\mathcal{N}(0, 2.19)$

• Interest in posterior mean $\mu^C(x)$ or $\mu^N(x)$

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>4.5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu^C(x)$</td>
<td>0</td>
<td>0.52</td>
<td>1.27</td>
<td>4.09</td>
<td>9.80</td>
</tr>
<tr>
<td>$\mu^N(x)$</td>
<td>0</td>
<td>0.69</td>
<td>1.37</td>
<td>3.09</td>
<td>6.87</td>
</tr>
</tbody>
</table>

• Decision strongly dependent on the choice of the prior for large x
BAYESIAN ROBUSTNESS

- Practical impossibility of specifying priors exactly matching experts’ knowledge

- Prior elicitation subject to uncertainty and, possibly, some degree of arbitrariness introduced by the analyst, e.g. the functional form of the distribution

- Uncertainty in the choice of priors modelled through a class of distribution (the same might apply for loss functions and statistical models/likelihoods)

- Use of indices to measure the consequences (i.e. perform robustness analysis) of the choice of a class of priors on the quantities of interest (e.g. posterior mean)
BAYESIAN ROBUSTNESS

- Choice of a class Γ of priors

- Interest in posterior expectation of $g(\theta)$ (e.g. posterior mean if $g(\theta) = \theta$)

- Computation of a robustness measure, e.g. range $\delta = \bar{\rho} - \underline{\rho}$

 \[
 (\bar{\rho} = \sup_{P \in \Gamma} E_P[g(\theta)] \text{ and } \underline{\rho} = \inf_{P \in \Gamma} E_P[g(\theta)])
 \]

 - δ “small” \Rightarrow robustness

 - δ “large”, $\Gamma_1 \subset \Gamma$ and/or new data

 - δ “large”, Γ and same data
BAYESIAN ROBUSTNESS - CLASSES OF PRIORS

- $\Gamma_Q = \{P : \alpha_i \leq P(I_i) \leq \beta_i, i = 1, \ldots, m\}$ (Quantile class)
- $\Gamma_{GM} = \{P : \int h_i(\theta) dP(\theta) = a_i, i = 1, \ldots, m\}$ (Generalised moments class)
- $\Gamma_{DR} = \{P : L(\theta) \leq \alpha p(\theta) \leq U(\theta), \alpha > 0\}$ (Density ratio class)
- $\Gamma_B = \{P : L(\theta) \leq p(\theta) \leq U(\theta)\}$ (Density bounded class)
- $\Gamma_{DB} = \{F \text{ c.d.f.} : F_l(\theta) \leq F(\theta) \leq F_u(\theta), \forall \theta\}$ (Distribution bounded class)
- $\Gamma_\varepsilon = \{P : P = (1 - \varepsilon)P_0 + \varepsilon Q, Q \in Q\}$ (ε-contaminations)
- etc.
A SHORT HISTORY OF BAYESIAN ROBUSTNESS

- Early work by Good in the ’50s
- Kadane and Berger in mid ’80s
- Berger and O’Hagan at Valencia meeting in 1988
- Berger in JSPI (1990) and TEST (1994)
- Workshops in Milano (1992) and Rimini (1995) and their proceedings
- MCMC in mid 90’s
- Rios Insua and Ruggeri (2000)
- Special issue of IJAR (2009)
STOCHASTIC ORDERS

- **Usual** stochastic order
 - X and Y r.v.’s with d.f.’s F_X and F_Y s.t. $F_X(t) \geq F_Y(t), \quad \forall t \in \mathbb{R}$
 - $\Rightarrow X \leq_{st} Y$, i.e. X is said to be **smaller than** Y **in the usual stochastic order**
 - $X \leq_{st} Y \iff E[g(X)] \leq E[g(Y)]$ holds for all increasing functions g for which the expectations exist

- Likelihood ratio order
 - X and Y be (discrete) absolutely continuous r.v.’s with d.f.’s F_X and F_Y and (discrete) densities f_X and f_Y s.t. $\frac{f_Y(t)}{f_X(t)}$ increases over the union of the supports of X and Y (here $a/0$ is taken to be equal to ∞ whenever $a > 0$)
 - $\Rightarrow X \leq_{lr} Y$, i.e. X is said to be **smaller than** Y **in the likelihood ratio order**

- $X \leq_{lr} Y \Rightarrow X \leq_{st} Y$
DISTORTION FUNCTIONS

- X r.v. with d.f. F_X

- h distortion function
 - non-decreasing continuous function $h : [0, 1] \rightarrow [0, 1]$
 - s.t. $h(0) = 0$ and $h(1) = 1$

- Given h, cumulative probability modified by
 \[F_h(x) = h \circ F(x) = h[F(x)] \]

- $\Rightarrow X_h$ distorted r.v. with d.f. $F_h(x)$

- Distortion functions used to build classes of priors, with stochastic order properties
SOME RESULTS

- Prior distribution π with d.f. $F_\pi(\theta)$ and distortion function h

- \Rightarrow distorted prior distribution π_h with d.f. $F_{\pi_h}(\theta) = h \circ F_\pi(\theta) = h[F_\pi(\theta)]$

- Lemma.
 - π prior distribution (absolutely continuous or discrete) with d.f. F_π
 - h convex distortion function in $[0, 1] \Rightarrow \pi \leq_{lr} \pi_h$
 - h concave distortion function in $[0, 1] \Rightarrow \pi \geq_{lr} \pi_h$

- Important result for the construction of classes of priors through stochastic ordering
SOME RESULTS

• X r.v. with d.f $F \Rightarrow$ quantile function $F_X^{-1}(p) = \inf\{x : F_X(x) \geq p\}, \forall p \in (0, 1)$

• X and Y r.v.’s with continuous and strictly increasing d.f.’s F_X and F_Y
 $\Rightarrow h_{XY}(t) = F_Y(F_X^{-1}(t))$ distortion function mapping the d.f. of X to the d.f. of Y

• **Theorem (Lehmann and Rojo, 1992).** Under the above regularity conditions, the likelihood ratio order between X and Y is equivalent to check if the function $h_{XY}(t)$ is convex or, analogously, if $h_{YX}(t)$ is concave

• Therefore, assuming continuous and strictly increasing distributions functions, the existence of a convex or a concave distortion that maps a distribution function to another one is a necessary and sufficient condition for the likelihood ratio order
DISTORTED BAND OF PRIORS

- Uncertainty on prior π through concave (h_1) and convex (h_2) distortion functions

- **Previous Lemma.** Prior π and convex (or concave) distortion function h in $[0, 1]$ implies $\pi \leq_{lr} \pi_h$ (or $\pi \geq_{lr} \pi_h$)

- Lemma \Rightarrow distorted distributions π_{h_1} and π_{h_2} s.t. $\pi_{h_1} \leq_{lr} \pi \leq_{lr} \pi_{h_2}$

- **Definition.** Distorted band $\Gamma_{h_1, h_2, \pi}$ s.t. $\Gamma_{h_1, h_2, \pi} = \{\pi' : \pi_{h_1} \leq_{lr} \pi' \leq_{lr} \pi_{h_2}\}$

- Lemma $\Rightarrow \pi \in \Gamma_{h_1, h_2, \pi}$

- \Rightarrow distorted band as a particular "neighborhood" band of π, with lower and upper bound given by distorted distributions

- Band defined only through an upper (or lower) bound when considering h_1 (or h_2) instead of the identity function
DISTORTED BAND OF PRIORS

- $X \leq_{lr} Y \Rightarrow X \leq_{st} Y$

- \Rightarrow distorted band subclass of well known distribution band class, i.e.

 $\Gamma_{h_1,h_2,\pi} \subseteq \{\pi' : \pi_{h_1} \leq_{st} \pi' \leq_{st} \pi_{h_2}\}$,
 $\quad = \{\pi' : F_{\pi_{h_1}}(\theta) \geq F_{\pi'}(\theta) \geq F_{\pi_{h_2}}(\theta), \forall \theta \in \Theta\}$

- Usually d.f. of π_{h_1} "upper bound" F_U and d.f of π_{h_2} "lower bound" F_L

- Interpretation of distortion band in terms of prior probability sets based on Shaked and Shanthikumar (2007):

 $\Gamma_{h_1,h_2,\pi} = \{\pi' : \pi_{h_1}(\cdot|A) \leq_{st} \pi'(\cdot|A) \leq_{st} \pi_{h_2}(\cdot|A)\}$, for all measurable $A \subseteq \Theta$

- Note that likelihood ratio order does not apply, in general, when comparing two priors π'_1 and π'_2 in $\Gamma_{h_1,h_2,\pi}$, since each of them is just ordered w.r.t. π_{h_1} and π_{h_2}
DISTORTED BAND OF PRIORS

• Given any pair π_1 and π_2 in $\Gamma_{h_1,h_2,\pi}$ and any $0 \leq \epsilon \leq 1$
 \Rightarrow consider mixture prior $\pi_\epsilon = (1 - \epsilon)\pi_1 + \epsilon\pi_2$

• It can be proved that $\pi_{h_1} \leq_{lr} \pi_\epsilon$ and $\pi_\epsilon \leq_{lr} \pi_{h_2}$

• $\Rightarrow \pi_\epsilon \in \Gamma_{h_1,h_2,\pi}$

• In particular mixtures of π (baseline prior) and any π_1 in $\Gamma_{h_1,h_2,\pi}$ belong to $\Gamma_{h_1,h_2,\pi}$
CHOICES OF DISTORTION FUNCTIONS

• \(h_1(x) = 1 - (1 - x)^\alpha \) and \(h_2(x) = x^\alpha \), \(\forall \alpha > 1 \)
 - \(\alpha = n \in \mathbb{N} \Rightarrow F_{\pi h_1}(\theta) = 1 - (1 - F_\pi(\theta))^n \) and \(F_{\pi h_2}(\theta) = (F_\pi(\theta))^n \)
 - \(\Rightarrow \) d.f.'s of min and max of i.i.d. random sample of size \(n \) from baseline prior \(\pi \)

• \(h_1(x) = \min\{\frac{x}{\alpha}, 1\} \) and \(h_2(x) = \max\{\frac{x-\alpha}{1-\alpha}, 0\}, \quad 0 < \alpha < 1 \)
 - \(\Rightarrow \) truncated distributions \(\pi_{h_1} = st \pi(\cdot | A_1) \) and \(\pi_{h_2} = st \pi(\cdot | A_2) \)
 * \(=_{st} \) means equality in law
 * \(A_1 = (-\infty, F_{\pi}^{-1}(\alpha)] \)
 * \(A_2 = (F_{\pi}^{-1}(\alpha), \infty) \)
CHOICES OF DISTORTION FUNCTIONS

- Skewed distributions
- π absolutely continuous, symmetric around 0 prior with density $\pi(\theta)$ and d.f. $F_\pi(\theta)$
- \Rightarrow skew-π with parameter α with density $\pi_\alpha(\theta) = 2\pi(\theta)F_\pi(\alpha\theta)$
- Distribution: right skewed if $\alpha > 0$ and left skewed if $\alpha < 0$
- Easy to show $\pi \leq_{lr} \pi_\alpha$ for all $\alpha > 0$ and $\pi_\alpha \leq_{lr} \pi$ for all $\alpha < 0$
CHOICES OF DISTORTION FUNCTIONS

- $h_{\pi \pi, \alpha}(x) = \int_{-\infty}^{F_{\pi}^{-1}(x)} 2\pi(\theta) F_{\pi}(\alpha \theta) d\theta$
 - maps d.f. prior π to d.f. of skewed π_{α}
 - $\Rightarrow h'_{\pi \pi, \alpha}(x) = 2F_{\pi}(\alpha F_{\pi}^{-1}(x))$
 - Both F_{π} and F_{π}^{-1} increasing and differentiable
 $\Rightarrow h'_{\pi \pi, \alpha}(x)$ increasing $\forall \alpha > 0$ and decreasing $\forall \alpha < 0$
 $\Rightarrow h_{\pi \pi, \alpha}(x)$ convex or concave, respectively
 - Concave and convex functions given, $\forall \beta \geq 0$, by
 * $h_{1}(x) = \int_{-\infty}^{F_{\pi}^{-1}(x)} 2\pi(\theta) F_{\pi}(-\beta \theta) d\theta$
 * $h_{2}(x) = \int_{-\infty}^{F_{\pi}^{-1}(x)} 2\pi(\theta) F_{\pi}(\beta \theta) d\theta$
CHOICES OF DISTORTION FUNCTIONS

- $\pi \sim N(0, 1)$ prior with standard normal d.f. Φ_Z

- Distorted d.f.'s $F_{\pi_{h_1}}(\theta) = 1 - (1 - \Phi_Z(\theta))^{1.3}$ and $F_{\pi_{h_2}}(\theta) = (\Phi_Z(\theta))^{1.3}$
CHOICES OF DISTORTION FUNCTIONS

- $\pi \sim U(0, 1)$ prior with d.f. Φ_Z
- Distorted d.f.'s $F_{\pi_{h_1}}(\theta) = 1 - (1 - \Phi_Z(\theta))^{1.1}$ and $F_{\pi_{h_2}}(\theta) = (\Phi_Z(\theta))^{1.1}$
POSTERIOR BAND

- Spizzichino (2001): given two priors π_1 and π_2 s.t. $\pi_1 \leq_{lr} \pi_2$
 \Rightarrow posteriors s.t. $\pi_{1x} \leq_{lr} \pi_{2x}$

- **Proposition.** π prior and $\Gamma_{h_1, h_2, \pi}$ distorted band around π based on h_1 and h_2
 \Rightarrow $\pi_{h_1, x} \leq_{lr} \pi'_{x} \leq_{lr} \pi_{h_2, x} \forall \pi' \in \Gamma_{h_1, h_2, \pi}$

- Posterior of lower and upper bound distributions of the distribution band \Rightarrow lower and upper bounds in the \leq_{lr} order sense for Γ_{x}, family of posterior distributions

- \Rightarrow Γ_{x} still distortion band of a posterior for some concave and convex functions

- **Closure** property very uncommon among classes of priors
 \Rightarrow dealing with priors or posteriors is the same
CONCENTRATION FUNCTION CLASS

• n individuals with wealth $x_i, i = 1, \ldots, n$ ⇒ ordered $x_1 \leq \ldots \leq x_n$

• $(k/n, S_k/S_n), k = 0, \ldots, n, S_0 = 0$ and $S_k = \sum_{i=1}^{k} x(i)$ (Lorenz curve)

• Comparison of discrete p.m.’s with uniform

Example: $(0.2, 0.3, 0.5) & (0.1, 0.3, 0.6)$ vs. $(1/3, 1/3, 1/3)$

Comparison of two p.m.’s on same (Ω, \mathcal{F}, P) ⇒ concentration function
CONCENTRATION FUNCTION CLASS

- P, P_0 probability measures on (Ω, \mathcal{F})
- σ–finite ν dominating $P, P_0 \Rightarrow p(\omega), p_0(\omega)$
- $P \sim \mathcal{N}(0, 1), P_0 \sim C(0, 1)$

Densities $\mathcal{N}(0, 1)$ and $C(0, 1)$ (left) - likelihood ratio (right)
CONCENTRATION FUNCTION CLASS

- Each horizontal line at $y \Rightarrow \text{subset } A_y$ with likelihood ratio $m(\omega) = \frac{p(\omega)}{p_0(\omega)} \leq q$

- If $P_0(A_y) = x \Rightarrow A_y$ is the subset of P_0-measure x with smallest P-measure $\varphi(x)$

- The pairs $(x, \varphi(x))$ determine the c.f.
CONCENTRATION FUNCTION CLASS

• \((h, N)\) Lebesgue decomposition of \(P\) w.r.t. \(P_0\)

• \(N = \{\omega \in \Omega : p_0(\omega) = 0\}\)

• \(m(\omega) = \begin{cases}
 p(\omega)/p_0(\omega) & \omega \in N^C \\
 \infty & \omega \in N
\end{cases}\)

• \(P(A) = P_s(A) + P_a(A), \forall A \in \mathcal{F}\)

• \(P_a(A) = \int_{A \cap N^C} m(\omega)P_0(d\omega), P_s(A) = P(A \cap N)\)

• \(P_a \ll P_0, P_s \perp P_0\)
CONCENTRATION FUNCTION CLASS

- $H(y) = P_0(\{\omega \in \Omega : m(\omega) \leq y\})$

- $c_x = \inf\{y \in \mathbb{R} : H(y) \geq x\}$

- $L_x = \{\omega \in \Omega : m(\omega) \leq c_x\}$, $L_x^- = \{\omega \in \Omega : m(\omega) < c_x\}$

- $\varphi(x) = \begin{cases}
0 & x = 0 \\
P(L_x^-) + c_x\{x - H(c_x^-)\} & x \in (0, 1) \\
P_a(\Omega) & x = 1
\end{cases}$
CONCENTRATION FUNCTION CLASS

Main properties

• \(\varphi(x) \) nondecreasing, continuous and convex, \(\varphi(0) = 0 \)

• \(\varphi(x) \equiv 0 \iff P \perp P_0 \)

• \(\varphi(x) = x, \forall x \in [0, 1] \iff P = P_0 \)

• \(P_0(A) = x \Rightarrow \varphi(x) \leq P(A) \leq 1 - \varphi(1 - x) \)

• \(\varphi(x) = \int_0^{c_x} \{x - H(t)\} dt = \int_0^x c_t dt \)

• \(\lim_{n \to \infty} \varphi_{P_n}(x) = x, \forall x \in [0, 1] \iff \lim_{n \to \infty} \sup_{A \in \mathcal{F}} |P_n(A) - P_0(A)| = 0 \)
CONCENTRATION FUNCTION CLASS

Two Beta distributions \(P \) and \(P_0 \) with

- very close mean, median and mode
- c.f. of \(P \) w.r.t. \(P_0 \) : \(\varphi(x) \approx 0, \ x \in [0, 1) \)
- The two distributions are very different since \(P_0 \) concentrates mass (i.e. gives very high probability) to a subset of negligible probability under \(P \)
Concentration function class

Concentration function of $P \sim \mathcal{G}(2, 1)$ w.r.t. $P_0 \sim \mathcal{E}(1)$

- $p_0(\theta) = e^{-\theta}, p(\theta) = \theta e^{-\theta}, \theta \geq 0$

- $m(\theta) = p(\theta)/p_0(\theta) = \theta$

- Find $y : x = P_0 (\{\theta \in \Theta : m(\theta) \leq y\}) = 1 - e^{-y}$

$\Rightarrow \varphi(x) = P (\{\theta \in \Theta : m(\theta) \leq y\}) = 1 - (1 - x)(1 - \log(1 - x))$
CONCENTRATION FUNCTION CLASS

• g monotone nondecreasing, continuous, convex: $g(0) = 0$ and $g(1) \leq 1$

• $K_g = \{ P : P(A) \geq g(P_0(A)) \ \forall A \in \mathcal{F} \}$, g-neighborhood of non-atomic P_0

 − $g(P_0(A)) = P_0(A)P_0(A^C)$

 − $g(P_0(A)) = \min\{P_0(A), P_0(A^C)\}$

• $P \in K_g \Rightarrow g(P_0(A)) \leq P(A) \leq 1 - g(1 - P_0(A))$

• $\{K_g\}$ generates a topology over \mathcal{P}

• \exists at least one $P : g$ is the concentration function $\varphi_P(x)$ of P w.r.t. P_0

• $K_g = \{ P : \varphi_P(x) \geq g(x), \forall x \in [0, 1] \}$

• $P \in K_g$ mixture of extremal p.m.'s in $E_g = \{ P : \varphi_P(x) = g(x), \forall x \in [0, 1] \}$

• $\Rightarrow \sup_{P \in K_g} E[k(\theta)] = \sup_{P \in E_g} E[k(\theta)]$
CONCENTRATION FUNCTION CLASS

Neighbourhood of the uniform distribution

- \(X \sim Bin(2, \theta) \)
 \[f(x|\theta) = \binom{2}{x} \theta^x (1-\theta)^{2-x}, \quad \theta \in [0, 1], \quad x = 0, 1, 2 \]

- \(P_0 \) uniform over \([0, 1]\)

- Choose a class of priors \(P \) s.t.
 \[|P_0(A) - P(A)| \leq P_0(A)P_0(A^C), \quad \forall A \in \mathcal{F} \]

- \(\Rightarrow \varphi(x) \geq x^2 = g(x), \quad \forall x \in [0, 1] \)
CONCENTRATION FUNCTION AND DISTORTION BANDS

- Nondecreasing, continuous and convex distortion function $h(x)$

- R.v. X with d.f. $F(x)$ and density $f(x)$

- Distorted r.v. X_h with d.f. $F_h(x) = h[F(x)]$ and density $f_h(x) = h'[F(x)]f(x)$

- Likelihood ratio $m(x) = \frac{f_h(x)}{f(x)} = h'[F(x)]$ increasing since $h'' > 0$ because of convexity of h

- Consider likelihood subsets $L_z = (-\infty, z]$ with probability $F(z)$ and $F_h(z)$ under the two probability measures

- Take $x_z = F(z)$ and assume F invertible so that $z = F^{-1}(x_z)$

- $\varphi_h(x_z) = F_h(z) = h[F(z)] = h[F(F^{-1}(x_z))] = h(x_z)$
CONCENTRATION FUNCTION AND DISTORTION BANDS

- Dropping the dependence on \(z \) in \(\varphi_h(x_z) = h(x_z) \)
 \[\Rightarrow \varphi_h(x) = h(x) \text{ c.f. of p.m. } \Pi \text{ (for r.v. } X_h) \text{ w.r.t. p.m. } \Pi_0 \text{ (for r.v. } X) \]

- Given a distorted measure \(\Rightarrow \) its distortion function interpreted as c.f. of the distorted measure w.r.t. baseline one

- Given a nondecreasing, continuous and convex function \(h(x) \), there exists an infinite number of p.m.’s (including the corresponding distorted measure) whose c.f.’s w.r.t. the baseline measure are given by \(h(x) \)

- \(\Psi_{\pi_0,h} \) c.f. class of priors given by all the p.m.’s whose c.f.’s are above a nondecreasing, continuous and convex function \(h(x) \)

- \(\Gamma_{\pi_0,h} = \{\pi' : \pi_0 \leq_{lr} \pi' \leq_{lr} \pi_h\} \) distorted band

- **Theorem.** The distorted band class \(\Gamma_{\pi_0,h} \) is properly included in the concentration function class \(\Psi_{\pi_0,h} \)
CONCENTRATION FUNCTION AND DISTORTION BANDS

- **Theorem.** The distorted band class $\Gamma_{\pi_0, h}$ is properly included in the concentration function class $\Psi_{\pi_0, h}$

- **Example** showing the inclusion is proper:
 - Uniform distribution on $[0, 1]$ as a baseline prior π_0
 - Distortion function $h(x) = x^2$
 - \Rightarrow corresponding distorted distribution with density $\pi_h(x) = 2x$, whose likelihood ratio w.r.t. the uniform density is increasing $(m(x) = \pi_h(x)) = 2x$
 - Distribution π^* with density $\pi^*(x) = 2(1 - x)$ has same c.f. $\varphi^*(x) = x^2$ as distorted distribution (w.r.t. π_0) but ratio of its density w.r.t. the uniform one is decreasing
 - $\Rightarrow \pi^* \not\in \Gamma_{\pi_0, h}$
CONCENTRATION FUNCTION AND DISTORTION BANDS

- As a consequence of the Representation Theorem 3 in Fortini and Ruggeri (1995), all priors in the distorted band class can be represented as mixture of extremal distributions in $\Psi_{\pi_0, h}$.

- As a consequence of the previous theorem and Theorem 4 in Fortini and Ruggeri (1995), it is possible to provide an upper bound on the supremum of the expectation of an integrable function $g(x)$ w.r.t. the class of priors $\Gamma_{\pi_0, h}$, since

$$\sup_{\pi \in \Gamma_{\pi_0, h}} E^\pi(g(X)) \leq \sup_{\pi \in \Psi_{\pi_0, h}} E^\pi(g(X))$$

- The supremum of the expectation of $g(x)$ over the class $\Psi_{\pi_0, h}$ is obtained for a distribution with c.f. $h(x)$ w.r.t. π_0, as proved in Fortini and Ruggeri (1995).

- A lower bound on the infimum is obtained similarly.

- The finding can be useful, especially when the difference between upper and lower bounds is small, when performing a sensitivity analysis about a posterior expected value (e.g. of the function $g(x)$) aimed to measure the influence of the choice of a prior in a class.
METRICS TO MEASURE UNCERTAINTY

- Interest in probability metrics to evaluate how a prior belief differs from its distorted version and how the corresponding posterior distributions differ

- Mathematical tractability (but not only!) ⇒ interest in Kolmogorov and Kantorovich metrics

- R.v.’s X and Y with d.f.’s F_X and F_Y

- Kolmogorov metric $K(X, Y)$

 $K(X, Y) = \sup_{x \in \mathbb{R}} |F_X(x) - F_Y(x)|$

 ⇒ largest absolute difference between F_X and F_Y

- Kantorovich (or Wasserstein) metric $KW(X, Y)$

 $KW(X, Y) = \int_{-\infty}^{\infty} |F_X(x) - F_Y(x)| dx$

- $|F_X(x) - F_Y(x)| \to 0$ as $x \to \pm \infty$ ⇒ Kolmogorov metric completely insensitive to differences in the tails of the distributions, unlike Kantorovich’s
KOLMOGOROV METRIC

Lemma.

- π absolutely continuous prior

- h differentiable (concave or convex) distortion function

- Kolmogorov distance between π and π_h given by

$$K(\pi, \pi_h) = \sup_{x \in \mathbb{R}} |F_\pi(x) - F_{\pi_h}(x)|,$$

$$= \begin{cases} p_0 - h(p_0) & \text{if } h \text{ is convex}, \\ h(p_0) - p_0 & \text{if } h \text{ is concave}. \end{cases}$$

- p_0 satisfies $h'(p_0) = 1$

- maximum achieved at $\theta_0 = F_\pi^{-1}(p_0)$
KOLMOGOROV METRIC

• Distance in previous Lemma depends only on the distortion function
 – $p_0 - h(p_0)$ and p_0 satisfying $h'(p_0) = 1$

• \Rightarrow Kolmogorov distance useful to measure (and tune) uncertainty in distorted band

• Example.
 – $h_1(x) = 1 - (1 - x)^\alpha$ and $h_2(x) = x^\alpha$, $\forall \alpha > 1$
 – $\Rightarrow K(\pi, \pi_{h_1}) = K(\pi, \pi_{h_2}) = \frac{\alpha - 1}{\sqrt[\alpha - 1]{\alpha^\alpha}}$

 – $K(\pi, \pi_{h_1})$ increasing function of α

 – $\alpha = 1.2$

 – $\Rightarrow K(\pi, \pi_{h_1}) = K(\pi, \pi_{h_2}) = 0.067$, i.e. the d.f.'s differs at most for 0.067
KANTOROVICH METRIC

• X and Y with d.f. F_X and F_Y s.t. $X \leq_{st} Y$

$$KW(X, Y) = \int_{-\infty}^{\infty} |F_X(x) - F_Y(x)| \, dx$$

$$= \int_{-\infty}^{\infty} (F_X(x) - F_Y(x)) \, dx$$

$$= E(Y) - E(X)$$

when expectations exist

• $X \leq_{st} Y$ and $E(X) = E(Y)$

 $\Rightarrow KW(X, Y) = 0$

 $\Rightarrow X$ and Y equal in distributions, i.e., $X =_{st} Y$
KANTOROVICH METRIC

- $KW(\pi_{h_1}, \pi_{h_2}) = E^{\pi_{h_2}}(\theta) - E^{\pi_{h_1}}(\theta)$
- $KW(\pi, \pi_{h_1}) = E^{\pi}(\theta) - E^{\pi_{h_1}}(\theta)$
- $KW(\pi, \pi_{h_2}) = E^{\pi_{h_2}}(\theta) - E^{\pi}(\theta)$
- Same for posterior distributions
- $KW(\pi_{h_1}, \pi_{h_2}) = KW(\pi, \pi_{h_2}) + KW(\pi, \pi_{h_1})$
- \Rightarrow possible identify which bound, h_1 or h_2, is contributing the most to uncertainty
KANTOROVICH METRIC

• Example.
 - $\pi \sim U(0, 1)$
 - $h_1(x) = 1 - (1 - x)^\alpha$ and $h_2(x) = x^\alpha$, $\forall \alpha > 1$
 - $\Rightarrow KW(\pi, \pi_{h_1}) = KW(\pi, \pi_{h_2}) = \frac{1}{2} - \frac{1}{\alpha + 1}$
 - $KW(\pi, \pi_{h_1})$ increasing function of α
 - \Rightarrow distance between expectations not greater than 0.5
 - If $h_1(x) = 1 - (1 - x)^2$ and $h_2(x) = x^3$
 - $\Rightarrow KW(\pi, \pi_{h_1}) = \frac{1}{6} < \frac{1}{4} = KW(\pi, \pi_{h_2})$
 - $\Rightarrow h_2$ contributes more than h_1 to uncertainty
CHOICE OF DISTORTION FUNCTIONS

- Parameter θ meaningful in a financial context
 - class allows for both risk aversion and proneness through use of convex and concave distortion functions, respectively, giving more (or less) weight to larger events
 - proper choice of parameters to model more uncertainty towards aversion or proneness

- $h_1(x) = 1 - (1 - x)^\alpha$ and $h_2(x) = x^\alpha, \forall \alpha > 1$
 - satisfactorily represents uncertainty in the tails of the prior

- Concave and convex functions given by

 \[
 h_1(x) = \int_{-\infty}^{F^{-1}_\pi(x)} 2\pi(\theta)F_\pi(-\beta\theta)d\theta \quad \text{and} \quad h_2(x) = \int_{-\infty}^{F^{-1}_\pi(x)} 2\pi(\theta)F_\pi(\beta\theta)d\theta, \forall \beta \geq 0
 \]
 - useful to elicit prior knowledge with "normal-like" shape but with lack of symmetry
(ROBUST) DECISION ANALYSIS

- X r.v. with distribution P_{θ} and density $p_{\theta}(x)$
- π prior, with density $\pi(\theta)$ over the set of states $\theta \in \Theta$, in class Γ
- $l(\theta)$ likelihood function for observed x
- $m_{\pi}(x) = \int l(\theta)\pi(\theta)d\theta$ marginal density
- π_{x} posterior with density $\pi_{x}(\theta)$ in class Γ_{x}
- \mathcal{A} set of alternatives (actions) a
- $L(\theta, a)$ loss function in class \mathcal{L}
(ROBUST) DECISION ANALYSIS

• $\rho(\pi, L, a)$ posterior expected loss of a, i.e.

$$
\rho(\pi, L, a) = \frac{\int L(a, \theta)l(\theta)\pi(\theta)d\theta}{m_\pi(x)} = E_{\pi_x}[L(a, \theta)]
$$

• $\forall (L, \pi) \in \mathcal{L} \times \Gamma$, $a^*_{{(L,\pi)}}$ Bayes action corresponding to (L, π) given by

$$
\rho(\pi, L, a^*_{{(L,\pi)}}) = \min_{a \in \mathcal{A}} \rho(\pi, L, a)
$$

• $B(L, \pi)$ set of all Bayes actions associated with pair (L, π)

• $a^*_{{(L,\pi)}}$ and $\bar{a}^*_{{(L,\pi)}}$: infimum and supremum of all Bayes actions
ORDERING BAYES ACTIONS

- $X \leq_{lr} Y \Rightarrow X \leq_{st} Y$
- $X \leq_{st} Y \Leftrightarrow E[g(X)] \leq E[g(Y)]$ for all increasing g s.t. expectations exist
- $\Rightarrow E^{\pi_{h_1}}(g(\theta)) \leq E^{\pi'}(g(\theta)) \leq E^{\pi_{h_2}}(g(\theta)), \forall \pi' \in \Gamma_{h_1, h_2, \pi}$
- Same for posteriors
- $L(a, \theta) : \mathbb{R}^2 \rightarrow \mathbb{R}$ submodular function if for all $(a_1, \theta_1), (a_2, \theta_2) \in \mathbb{R}^2$
 \[L(a_1, \theta_1) \lor L(a_2, \theta_2) \leq L(a_1, \theta_1) + L(a_2, \theta_2) \]
 \[(a_1, \theta_1) \lor (a_2, \theta_2) = (\max\{a_1, a_2\}, \max\{\theta_1, \theta_2\}) \]
 \[(a_1, \theta_1) \land (a_2, \theta_2) = (\min\{a_1, a_2\}, \min\{\theta_1, \theta_2\}) \]
- L submodular $\Rightarrow -L$ supermodular
- L twice differentiable \Rightarrow submodular if $\frac{\partial^2 L(a, \theta)}{\partial \theta \partial a} \leq 0, \forall a, \theta$
- For a_1 and a_2 s.t. $a_1 \leq a_2 \Rightarrow L$ submodular $\Leftrightarrow L(a_2, \theta) - L(a_1, \theta)$ decreasing in θ
CLASS OF CONVEX SUBMODULAR LOSS FUNCTIONS

- From now on, consider L_{sm}, class of convex submodular loss functions

- Widely used (classes of) loss functions included in L_{sm}
 - $\mathcal{L} = \{L_p(a, \theta) = |a - \theta|^p, p \geq 1\}$
 (absolute error loss for $p = 1$ and squared error loss for $p = 2$)
 - Quantile losses: $\mathcal{L} = \{L_q(a, \theta) = |a - \theta| + a(2q - 1), q \in [0, 1]\}$
 (absolute error loss for $q = 1/2$)
 - LINEX losses: $\mathcal{L} = \{L_k(a, \theta) = \exp(k(a - \theta)) - k(a - \theta) - 1, (k \neq 0)\}$
 - Linear losses $\mathcal{L} = \{L_{\alpha,\beta}(a, \theta) = \begin{cases} \alpha(a - \theta) & a \geq \theta \\ \beta(\theta - a) & a < \theta \end{cases}, \alpha, \beta > 0\}$
 - $\mathcal{L} = \{L_{\lambda(.)}(a, \theta) = \int_{0}^{\theta-a} \lambda(t)dt\}$,
 with $\lambda(t)$ positive (negative, null) if and only if $t > 0 (t < 0, t = 0)$ and $\lambda'(t) > 0$
 - $\mathcal{L} = \{L_{\phi(.)}(a, \theta) = \phi(\theta - a)\}$ for differentiable convex function ϕ
ORDERING BAYES ACTIONS

Theorem.

- \(\pi \) prior distribution
- \(h_1 \) concave and \(h_2 \) convex distortion functions
- \(\Gamma_{h_1,h_2,\pi} \) corresponding distorted band
- \(B_{(L,\pi)} = [a^*_{(L,\pi)}, \overline{a}^*_{(L,\pi)}] \) set of all Bayes actions associated with pair \((L, \pi)\)
 - \(a^*_{(L,\pi)} \) and \(\overline{a}^*_{(L,\pi)} \): infimum and supremum of all Bayes actions
- \(\Rightarrow a^*_{(L,\pi_{h_1})} \leq a^*_{(L,\pi')} \leq a^*_{(L,\pi_{h_2})} \) and \(\overline{a}^*_{(L,\pi_{h_1})} \leq \overline{a}^*_{(L,\pi')} \leq \overline{a}^*_{(L,\pi_{h_2})} \)
 \(\forall L \in \mathcal{L}_{sm} \) and \(\forall \pi' \in \Gamma_{h_1,h_2,\pi} \), provided the set of Bayes actions is not empty
SAMPLE FROM POSTERIOR DISTORTED DISTRIBUTIONS

- Difficult in general to compute the exact distributions of the posterior distorted distributions
- π with probability density function
- Differentiable distortion functions
- Posterior sample generated using acceptance-rejection method
EXAMPLE

- X_1, X_2, \ldots, X_n i.i.d. r.v.'s $N(\theta, \sigma^2)$, with unknown mean θ and known variance σ^2
- $\pi: N(\mu, \tau^2)$ prior distribution on θ
- Squared loss function $L_2(\theta, a) = (\theta - a)^2$
- Distorted class $\Gamma_{h_1, h_2, \pi}$ defined by skewed distributions

 $$
 h_1(x) = \int_{-\infty}^{F_{\pi}^{-1}(x)} 2\pi(\theta) F_{\pi}(-\beta \theta) d\theta
 \text{ and } h_2(x) = \int_{-\infty}^{F_{\pi}^{-1}(x)} 2\pi(\theta) F_{\pi}(\beta \theta) d\theta, \forall \beta \geq 0
 $$

- Gaussian posterior π_x
 - mean $$(\sigma^2 \mu + n \bar{x} \tau^2) / (\sigma^2 + n \tau^2)$$
 - variance $$(\sigma^2 \tau^2) / (\sigma^2 + n \tau^2)$$
- Here: $\mu = 0$, $\tau^2 = 1$, $\sigma^2 = 1$ and $\beta = 1.2$ distortion parameter
- β provides degree of distortion using Kolmogorov and Kantorovich metrics

 $$
 K(\pi_{h_2}, \pi_{h_1}) = 0.5577 \text{ and } KW(\pi_{h_2}, \pi_{h_1}) = 1.2259
 $$
EXAMPLE

Range of Bayes actions (posterior means), $n = 1, \beta = 1.2$

<table>
<thead>
<tr>
<th>x</th>
<th>$E^{\pi_{x}}(\theta)$</th>
<th>$E^{\pi_{h_{2},x}}(\theta)$</th>
<th>$E^{\pi_{h_{1},x}}(\theta)$</th>
<th>$K(\pi_{h_{2},x}, \pi_{h_{1},x})$</th>
<th>$KW(\pi_{h_{2},x}, \pi_{h_{1},x})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.541</td>
<td>0.492</td>
<td>0.460</td>
<td>0.450</td>
<td>0.492</td>
</tr>
<tr>
<td>2</td>
<td>0.913</td>
<td>0.812</td>
<td>0.752</td>
<td>0.720</td>
<td>0.813</td>
</tr>
<tr>
<td>1</td>
<td>0.541</td>
<td>0.492</td>
<td>0.460</td>
<td>0.450</td>
<td>0.492</td>
</tr>
<tr>
<td>0</td>
<td>0.450</td>
<td>0.460</td>
<td>0.752</td>
<td>0.720</td>
<td>0.813</td>
</tr>
<tr>
<td>-1</td>
<td>0.460</td>
<td>0.450</td>
<td>0.720</td>
<td>0.752</td>
<td>0.813</td>
</tr>
<tr>
<td>-2</td>
<td>0.492</td>
<td>0.460</td>
<td>0.752</td>
<td>0.720</td>
<td>0.813</td>
</tr>
<tr>
<td>-3</td>
<td>0.541</td>
<td>0.492</td>
<td>0.460</td>
<td>0.450</td>
<td>0.492</td>
</tr>
</tbody>
</table>

- $KW(\pi_{h_{2},x}, \pi_{h_{1},x}) = E^{\pi_{h_{2},x}}(\theta) - E^{\pi_{x}}(\theta)$

- \Rightarrow range of Bayes actions coincides with Kantorovich distance
EXAMPLE: POSTERIOR DISTRIBUTION

\[\bar{x} = -1, \ n = 1 \]

\[\bar{x} = 0, \ n = 1 \]

\[\bar{x} = 1, \ n = 1 \]

\[\bar{x} = -1, \ n = 10 \]

\[\bar{x} = 0, \ n = 10 \]

\[\bar{x} = 1, \ n = 10 \]
EXAMPLE: POSTERIOR MEAN

Uncertainty decreases as n increases and increases as β increases (red: upper bound (h_2), black: lower bound (h_1), blue: baseline (π))

$n = 1, \beta = 0.5$

$n = 1, \beta = 1.2$

$n = 1, \beta = 2.5$

$n = 10, \beta = 0.5$

$n = 10, \beta = 1.2$

$n = 10, \beta = 2.5$
FUTURE WORK

- Application to real case study, with proper choice of distortion functions

- n-dimensional model parameter, stemming from works by
 - Shaked and Shanthikumar (2007) on the definitions of multivariate likelihood ratio order and multivariate stochastic order and
 - Di Bernardino and Rulliere (2013) on the extension of the notion of distortion to the multivariate case